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of laser energy in oxides of 1000 to 2000 A thickness. Experimentally, laser

fluxes greater than 60 mJ/cm2 produced color changes In the oxide, indicating a
change in oxide thickness and/or index of refraction.

Calculations of the energy density deposited in the oxide as a function of
distance from the front surface are shown in Fig. 1 for a 2000A oxide. Here the
input laser flux :0 is a parameter, and the reflection from the interface is
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Fig. 1. The calculated energy density in a 2000 Athick
oxide for various laser fluxes.

incorporated in the calculations. The hor’izont??dotted line represents phase
changes in the AS203 component of ~he oxide corresponding to the appropriate ener-

gy density. A linear model (cons:ant oxide composition as a function of laser
flux) was assumed throughout, The model verifies the onset of color change at

50-6’ImJ/cm7 corresponding to the melting cf AS203. These i~itial color changes

are pro}jablyrelaled to densifi~ation of t.ht?somewhat porous as-grown oxide,

Vaporization of AS2C3 should occur at t“luxesgreater than about 110 mJ/cm2. Our

w~rk has shown that evaporation of the AS203 component occurs at fluxes frOm

?00 mJ/cm: to 1,0 J/cm2,

The “crater” produc,~dby laser annc,llinghas been exm,ned by several techniques.
A micro-cllipsometc,”was u$ed to obtoln the datJ of ~ig, 2, H~ra?a focused Hetic
Ias?r beam was polarizi~tionmodulated, and the ?echn’quc of JasFcrson et al. was
used to determ4nc the ellip!,omet’{c parameters ‘jand ~’, From these parameters,
th? \r~dPx of rrfrection IIand tiltoxide tfllckncsst COIIILi bc determirlcd, A prc-
flle ot the crater i: shown in Tig, ?, HeI’cthi~oxi,lpt:~lckncs$ha$ bretlreduced

bV about 3A% by a l-J/croplacer pulse. The rourjhnossis bcllevcd in be produ:cd
b inten~,i.y$tructlirein the lasPr twom. Tho Los Alamos Sctcntific l.ti!;~rfltory
([ALL) ion ,,licro~rol)r (Q) usi nq !i-MPV dcutcr,jfls l-wo,ltJ:Pd the oy,ygi!n concrmtrdtion

data of Fly. 3. Thr nuclc~r react{on d + Ifi () .. p + *01” W(II it<od to obtain quan-
tl(ativc oxyqpn data. The oxygen content ncrc Is about 601 of the lnititl vfllur
and SCP?CS wf h thr?thlcklwss shown In I_lg,2, The prlmarv oxyqen loss mochirnism
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at 400eC produces significant Interface damage as seen by enhanced G-V loss peaks.
Hence laser annealing of oxides appears to be a means Jf prOCeSSlt19 native Oxtdes
without damaging the interface of the III-V material.

Pulsed l-MHz capacitance measurements were used tc evaluate the slow trap density,
Here the MOS structure was pulsed to -20 V for about 10 Ms. At the termination
of the voltage pulse, the capacitance is given by:

c(t) ■

Cox
fi.i{v;”i<vg

where K ■

*COX2
@-

(1)

(2)

Here c is the oxide die!ectr~c constant, A is the area of the MOS structure, COX

is the oxide capacitance, and NA is the density of free holes.

The DIIISedcaDacitdlce recovery is shown in Fig, 4 for three d’fferent otides.
Curve A is the recovery of an is-grown oxide. ‘Curve B is the response of a
furnac~-annealed oxldc for an annealing temperature of 350’’C--themaximum pcrmis
siblc steady-state temperature that.avoids arsenic 10SS. Curve C results from arl
oxide that was thermally annealed at 35(!”Cand laser annealed

230 mJ/rm7.

at a flux of
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Fig, 4, Pulsed-cnpacitanrr rccovrry f~r tlmv o!iries.
A) un,lnnc,~lod;B) th~rmnl-,lnnd,llcdal 350 C; C) tll~rrnal-

anpcnlcd at 350’t plus l,l;cr-annrolodat 730 mJ/cm~.
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traps with the v,lrloustreatm~nts Is obvious here. Multiple laser pulses seem to
produce nmre desirable changes in the oxide without producing radiation da~acje.
Such studies are still in progress.
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Fig, 5. Concentration of trapped oxide charge for the
three sample of Fig. 4.

Initiai .tudies have shown thiitthe chemical etch “’tcs for laser-annealed area>
arc different Lhan for unannealed areas. This eff t could b@ useful in devel.
oping new photollthographic processes.

In conclusion, wc have demonstrated a new method of changing the physical, chcml-
cal, and elcctrontc properties of native oxides grown on GaAs. This method sug-
gests a variety of uses in semiconductor technology.
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